University of Arkansas Cotton Breeding Program
2010 Progress Report
F.M. Bourland¹

RESEARCH PROBLEM

The University of Arkansas Cotton Breeding Program attempts to develop cotton genotypes that are improved with respect to yield, host-plant resistance, fiber quality, and adaptation to Arkansas environments. Such genotypes would be expected to provide higher, more consistent yields with fewer inputs. To maintain a strong breeding program, continued research is needed to develop techniques to identify genotypes with favorable genes, combine those genes into adapted lines, then select and test derived lines.

BACKGROUND INFORMATION

Cotton breeding programs have existed at the University of Arkansas since the 1920s (Bourland and Waddle, 1988). Throughout this time, the primary emphases of the programs have been to identify and develop lines, that are highly adapted to Arkansas environments and possess good host-plant resistance traits. Bourland (2010) provided the most recent update of the current program. The breeding program has primarily focused on conventional genotypes. The recent advent of glyphosate-resistant pigweed has renewed some interest in conventional cotton cultivars, but no highly adapted conventional cultivars have been available.

RESEARCH DESCRIPTION

Breeding lines and strains are annually evaluated at multiple locations in the University of Arkansas Cotton Breeding Program. Breeding lines are developed and evaluated in non-replicated tests, which include initial crossing of parents, individual plant selections from segregating populations, and evaluation of the progeny grown from seed of individual plants. Once segregating populations are established, each sequential test provides screening of genotypes to identify

¹Director, Northeast Research and Extension Center, Keiser.
ones with specific host-plant resistance and agronomic performance capabilities. Selected progeny are carried forward and evaluated in replicated strain tests at multiple Arkansas locations to determine yield, quality, host-plant resistance and adaptation properties. Superior strains are subsequently evaluated over multiple years and in regional tests. Improved strains are used as parents in the breeding program and/or released as germplasm or cultivars. Bourland (2004) described the selection criteria presently being used.

RESULTS

Breeding Lines
Each of the 30 sets of crosses made in 2010 was between conventional cotton lines. The primary focus of these crosses was to combine lines having specific morphological traits, enhanced yield components and improved fiber characteristics. In addition, crosses were made with lines that are resistant to imazamox. The 2010 breeding line effort also included 24 F_2 populations, 14 F_3 populations, 20 F_4 populations, 600 1st year progeny, and 168 advanced progeny were evaluated. Bolls were harvested from superior plants in F_2 and F_3 populations and bulked by population. Individual plants (661) were selected from the F_4 populations. After discarding individual plants for fiber traits, 552 progeny from the individual plant selections will be evaluated in 2011. Also, 192 superior F_5 progeny were advanced, and 72 F_6 advanced progeny were promoted to strain status.

Strain Evaluation
In 2010, 108 conventional and 18 transgenic strains (preliminary, new and advanced) were evaluated at multiple locations. Screening for host-plant resistance included evaluation for resistance to seed deterioration, bacterial blight, verticillium wilt, tarnished plant bug, and root knot nematode (in greenhouse). Work to improve yield stability by focusing on yield components and to improve fiber quality by reducing bract trichomes continued.

Two approaches for improving cotton yield stability are being used. The first approach focuses on yield components. Increased lint index and fiber density are being used as selection criteria to improve yield stability (Groves and Bourland, 2010). The second approach focuses on host-plant resistance, with specific emphasis on improving heat tolerance and resistance to tarnished plant bug. A method for evaluating heat tolerance is still being refined. Response of all entries in the Arkansas Cotton Variety Test, three Regional Strain Tests, and three Arkansas Strain Tests to tarnished plant bug was evaluated. Consistent response over years has been found.

Germplasm Releases
Germplasm releases are a major function of public breeding programs. The Arkansas Agricultural Experiment Station released six cotton germplasm lines in 2010. These lines included Arkot 0008, Arkot 0009, Arkot 0012, Arkot 0015a, Arkot 0015b, and Arkot 0016. Variation with respect to yield, adaptation, yield
components, fiber properties, and specific morphological and host-plant resistance traits are represented in these lines. The lines provide new genetic material to public and private cotton breeders with documented adaptation to the Mid-south cotton region. In addition, one conventional variety, ‘UA48’ was released in 2010. UA48 exhibits an unparalleled combination of early maturity, high yielding ability and very high fiber quality.

**PRACTICAL APPLICATION**

Genotypes that possess enhanced host-plant resistance, improved yield and yield stability, and good fiber quality are being developed. Improved host-plant resistance should decrease production costs and risks. Selection based on yield components may help to identify and develop lines having improved and more stable yield. Released germplasm lines should be valuable as breeding material to commercial breeders or released as cultivars. In either case, Arkansas cotton producers should benefit from having cultivars that are specifically adapted to their growing conditions.

**LITERATURE CITED**


