Effect of Phosphorus Deficiency on Cotton Physiology

Derrick M. Oosterhuis, Androniki C. Bibi, Evangelos D. Gonias, and Morteza Mozaffari

RESEARCH PROBLEM

Phosphorus (P) is an essential element in plants, required for vital structural and metabolic functions. A shortage of P will lead to a breakdown of plant membranes and reduce energy transfer within the plant. Crop fertilization programs must insure adequate P to support the critical role of this element in plant metabolism. Improving P fertilizer recommendations and increasing P use efficiency will increase grower profit margin and reduce the potential for offsite loss of P in drainage waters. Rapid introduction of modern cotton (Gossypium hirsutum L.) cultivars and changes in production practices, in the past several decades, have created a need to update the science base of cotton P fertilization recommendations. The objectives of this study were to quantify the effects of P deficiency on the physiological growth of cotton.

BACKGROUND INFORMATION

Phosphorus (P) is an essential macronutrient required for energy transfer (i.e., ATP and NADPH); genetic information (i.e., DNA and RNA); and formation of phospholipids; and it plays an important role in membrane integrity. Phosphorus is mobile in the plant such that young leaves or developing bolls can be nourished from the labile P of older tissues; i.e., P is redistributed from older to younger parts. In cotton, the critical-P concentrations range from 0.20 to 0.31% (Crozier et al., 2004; Cox and Barnes, 2002). For cotton grown in the southern regions of the USA, the critical-P concentration range in the upper mature leaf at first flower or first square is 0.30 to 0.50% (Plank, 1988). In Arkansas, a critical-P concentration range for petioles is not used because P is not recommended by the petiole monitoring program. Prior to 2006, no P fertilizer was recommended for cotton when modified Mehlich-3 (1:7 extraction ratio)-extractable phosphorus was detected.

\footnote{Distinguished professor, graduate assistant, and graduate assistant, respectively, Crop, Soil, and Environmental Sciences Department, Fayetteville; and research assistant professor, Soil Testing and Research Laboratory, Marianna.}
P was >100 lb P/acre. In 2002, approximately 95% of the soil samples submitted from cotton fields had soil-test P >100 lb/acre. This suggests that past P-fertilization practices have resulted in buildup of P in Arkansas soils and recommendations need to be updated. Information on the range of tissue-P concentrations that are sufficient for currently grown commercial cotton cultivars is an important component of developing improved P-management recommendations.

MATERIALS AND METHODS

The experiment was conducted in a growth chamber at the University of Arkansas Altheimer Laboratory in Fayetteville, Ark. The growth chamber was programmed for a 12-hour photoperiod, with day/night temperatures of 30/20°C and relative humidity of 60 to 80%. The cotton cultivar DDL 444 was planted in 2-L pots filled with washed sand. Each pot had a 2-cm diameter hole in the base for drainage. After emergence, seedlings were thinned to one plant per pot. All pots were watered with one-half strength Hoagland’s nutrient solution during the first four weeks after planting to maintain a sufficient nutrient and water supply. Four weeks after planting, all pots where flushed with deionized water and separated into two groups: P-sufficient and P-deficient. The P-sufficient treatment continued to receive the half-strength nutrient solution with P, while the P-deficient treatment received half-strength Hoagland’s nutrient solution without P. Four plants in each treatment were harvested weekly for four weeks after the initiation of the P treatments. The effects of P deficiency on leaf photosynthesis, quantum yield of PSII, membrane leakage, and chlorophyll SPAD were determined. The experimental design was a completely randomized design with five replications. A t-test was performed to determine whether significant (P≤0.05) differences existed between treatment means.

RESULTS AND DISCUSSION

Withholding P caused photosynthesis to significantly decline below that of cotton plants in the P-sufficient treatment two, three, and four weeks after treatments began (Fig. 1A). Quantum yield of PSII, as a measure of plant stress, reflected significant stress in the P-deficient plants the first week after treatment was imposed and three weeks later (Fig. 1B). Membrane leakage also increased significantly the third and fourth week of the treatment for the P-deficient treatment compared to the P-sufficient plants (Fig. 1C). The rapid effect of P deficiency on membrane leakage was expected in view of the critical role of P in the formation of phospholipids in plant membranes. Membrane leakage is a measure of cell integrity and provides a sensitive indicator of the plant stress suffered due to P deficiency. Finally, phosphorous deficiency caused significantly higher chlorophyll content two, three, and four weeks after the beginning of the treatment in the P-deficient treatment compared to the P-sufficient plants (Fig. 1D).
PRACTICAL APPLICATION

This growth room study quantified the effect of P deficiency on the physiological growth of cotton plants. Phosphorus deficiency caused a reduction in leaf photosynthesis and quantum yield of PSII, while resulting in increased membrane leakage and chlorophyll SPAD compared to phosphorus-sufficient plants.

LITERATURE CITED

Fig. 1. The effect of P-deficiency on (A) leaf photosynthesis, (B) Quantum yield PSII, (C) membrane leakage, and (D) Chlorophyll SPAD measured weekly starting 28 days after planting when P was withheld from the P-deficient treatment. The asterisk (*) indicates significant differences at $p \leq 0.05$ between P treatments within a sample week.